Tungsten Chemistry in Alkali Chloride Melts

Danil A. Danilov^a, Vladimir A. Volkovich^a, Boris D. Vasin^a, Ilya B. Polovov^a, and Trevor R. Griffiths^b

^a Department of Rare Metals, Ural State Technical University, 620002 Ekaterinburg, Russia
^b Redston Trevor Consulting Limited, Leeds, LS17 8RF, United Kingdom

Reprint requests to Dr. V. A. V.; E-mail: volkovich@dpt.ustu.ru

Z. Naturforsch. **62a**, 739 – 744 (2007); received May 30, 2007

Presented at the EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, September 16–22, 2006.

Speciation of tungsten in alkali chloride melts (based on NaCl-2CsCl, NaCl-KCl and 3LiCl-2KCl mixtures) was studied between 550 and 750 °C using electronic absorption spectroscopy. Only W(IV) and W(V) chloro and oxychloro species can be stabilized under the conditions studied. Tungsten(IV) chloride ions are very sensitive to oxide/hydroxide impurities present in the melt. Anodic dissolution of W metal at anodic current densities in the range of $0.005-0.1~\text{A/cm}^2$ produces only $[\text{WCl}_6]^2$ ions that can be electrochemically (on a glassy carbon anode) oxidized to $[\text{WCl}_6]^-$. Small amounts of oxide ions present in the melt result in a gradual conversion of W(IV) chloro species into W(IV) oxychloro species. In the presence of O_2 in the atmosphere $[\text{WCl}_6]^2$ is oxidized into the tungsten(V) species $[\text{WOCl}_5]^2$. Dissolution of tungsten hexachloride, WCl₆, in an NaCl-2CsCl melt initially yields $[\text{WCl}_6]^2$ (due to disproportionation). Reaction of metallic tungsten with Pd(II)-containing melts results in the formation of $[\text{WCl}_6]^2$ species. The main spectroscopic parameters of $[\text{WCl}_6]^2$ and $[\text{WCl}_6]^-$ complex ions were calculated.

Key words: Tungsten; Tungsten Chlorides; Chloride Melts; Electronic Absorption Spectroscopy.